Energetische Selbsterkenntnis
SolarBau Begleitforschung am Institutsgebäude des ZUB

Michael de Saldanha
Christina Sager

Themen und Methoden

In den Bereichen Gebäudelüftung, Raumkonditionierung über Bauteile, Tageslichtnutzung, sommerliches Wärmeverhalten und dem Zusammenwirken dieser Einzelaspekte im Gesamtsystem sind zur Zeit noch viele Fragen offen. Im Rahmen des Förderprogramms "Solar optimiertes Bauen" des BMWi wird das ZUB als Prototyp-Gebäude gefördert. Im Teilkonzept 3 des Programms "Solar optimierte Gebäude mit minimalem Energiebedarf" bietet sich die Möglichkeit, eine Vielzahl dieser aktuellen Fragestellungen zu bearbeiten. Als Demonstrationsbauvorhaben wird das Gebäude über vier Jahre detailliert vermessen und dokumentiert. Um eine ganzheitliche Betrachtungsweise zu erreichen, sind folgende Forschungsmethoden vorgesehen:

Vermessung des Gesamtbauwerkes

Einzelraumuntersuchungen
Um Behaglichkeitsaspekte und die Wechselwirkungen der Wärmeübergabe mit der Lüftung genau untersuchen zu können, werden Einzelräume detailliert vermessen. Fragen zu Tages- und Kunstlicht und die Auswirkung auf das sommerliche Verhalten werden ebenfalls untersucht. Der Forscher ist in diesem Fall gleichzeitig Nutzer der Testräume.

Detailmessungen
Detailaspekte, wie Luftströmungen im Raum oder das thermische Verhalten von Bauteilheizungen, die für die Gesamtsysteme von Interesse sind, werden intensiv analysiert.

Nutzerbefragungen
Um subjektive Größen und weiche Faktoren zu quantifizieren, werden am ZUB und an Referenzbauten Nutzerbefragungen durchgeführt. Wohlbefinden, individuelle Komfortanforderungen und Nutzerverhalten werden auf diese Weise erfaßt.
Forschungsfelder

Die Wechselwirkungen, die sich innerhalb des Gebäudes zwischen den verschiedenen Gebäude- und Anlagenkomponenten sowie durch den Nutzereinfluß ergeben, lassen sich in zahlreiche Fragestellungen aufgliedern. Diese werden als Einzelaspekte bearbeitet und bilden die Basis zum Verständnis des Gesamtsystems.

Bauteilkühlung / -kühlung

Gebäudelüftung
Welchen Einfluß haben verschiedene Lüftungskonzepte auf die Luftqualität. Für welche Anwendungsfälle sind die jeweiligen Konzepte geeignet, welche Folgen ergeben sich für die Anlagen- und Installationstechnik und welche Wechselwirkungen bestehen mit dem Gebäudetyp. Wie wirken sich die verschiedenen Lüftungskonzepte auf den Energiebedarf aus. Welche Auswirkungen ergeben sich für die Anlagentechnik, die Nutzung und den Energieverbrauch durch die Zuluftführung über ein Atrium. Wie können Lüftungsanlagen und natürliche Lüftung zusammenwirken und wie kann das Lüftungskonzept das sommerliche Verhalten verbessern. Wie groß ist der Anteil der Antriebsenergie und inwieweit können Wind und thermischer Auftrieb die Lüftung unterstützen. Sommerliches Wärmeverhalten

Tageslichtnutzung
Wie groß ist das energetische Einsparpotenzial durch Lichtlenkung und inwieweit wird das sommerliche Verhalten beeinflußt. Wie verändern sich die visuellen Komfortkriterien Blending, Kontraste, Lichteinfall und Reflexionen. Können die Anforderungen für Bildschirmarbeitsplätze erfüllt werden. Welche Veränderungen müssen an der künstlichen Beleuchtung vorgenommen werden, insbesondere welche Beleuchtungskonzepte und Regelstrategien sind für das Zusammenwirken mit Tageslichtsystemen geeignet. Wie können Tageslichtsysteme architektonisch integriert werden und wie muß die Konstruktion für die unterschiedlichen Orientierungen sein. Sind kontinuierlich oder saisonal nachgeführte Systeme besonders vorteilhaft.

<table>
<thead>
<tr>
<th>Aktuelle Fragestellungen im Bereich des energieoptimierten Bauens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bauteilheizung / Kühlung</td>
</tr>
<tr>
<td>1.1 Thermoaktive Decke</td>
</tr>
<tr>
<td>Quantifizierung der Heiz- und Kühl-</td>
</tr>
<tr>
<td>potenzielle des Systems</td>
</tr>
<tr>
<td>Einfuß des Heizsystems und der</td>
</tr>
<tr>
<td>Regelsysteme auf den Energiespeicher</td>
</tr>
<tr>
<td>Regelsysteme für T&D (Selbst-</td>
</tr>
<tr>
<td>regelung, Einzelraumregelung, Zonenregelung)</td>
</tr>
<tr>
<td>1.2 Fußbodenheizung / Kühlung</td>
</tr>
<tr>
<td>Quantifizierung der Heiz- und Kühl-</td>
</tr>
<tr>
<td>potenzielle des Systems</td>
</tr>
<tr>
<td>Einfuß des Heizsystems und der</td>
</tr>
<tr>
<td>Regelsysteme auf den Energiespeicher</td>
</tr>
<tr>
<td>Einfuß auf die Behaglichkeit im</td>
</tr>
<tr>
<td>Kühlbetrieb</td>
</tr>
<tr>
<td>1.3 Allgemein</td>
</tr>
<tr>
<td>Vergleichende Systemanalyse für</td>
</tr>
<tr>
<td>Bauwerkheizung / Kühlung in Bezug auf Leistungspotentielle</td>
</tr>
<tr>
<td>und Behaglichkeit</td>
</tr>
<tr>
<td>Analyse von Leistungsverträgen</td>
</tr>
<tr>
<td>und Systemtemperaturen</td>
</tr>
<tr>
<td>Einfuß des Nutzerverhaltens bei</td>
</tr>
<tr>
<td>den verschiedenen Regelsystemen (individuelle Behaglichkeit,</td>
</tr>
<tr>
<td>Energiemöglichkeiten)</td>
</tr>
<tr>
<td>2. Lüftung</td>
</tr>
<tr>
<td>2.1 Mechanische Lüftung</td>
</tr>
<tr>
<td>Lufthygienische Ausschaltung bei</td>
</tr>
<tr>
<td>mechanischer Lüftung</td>
</tr>
<tr>
<td>Energetische und lufthygienische</td>
</tr>
<tr>
<td>Ausschaltungen bei der Lüftung über die Gebäudetüren (Klima)</td>
</tr>
<tr>
<td>Potenziale zur Steigerung der Luft-</td>
</tr>
<tr>
<td>qualität durch sensor gesteuerte</td>
</tr>
<tr>
<td>Lüftung (CCD: Steuerung) im Büro-</td>
</tr>
<tr>
<td>und Häusbereich</td>
</tr>
<tr>
<td>Kombinationsmöglichkeiten mechanische / natürliche</td>
</tr>
<tr>
<td>Lüftung</td>
</tr>
<tr>
<td>Quantifizierung der Antriebenergie-</td>
</tr>
<tr>
<td>2.2 Natürliche Lüftung</td>
</tr>
<tr>
<td>Behagliche Zukunftseinschätzung über die</td>
</tr>
<tr>
<td>Wasserdampf (Anordnung: hohe Aufnahme, niedrige</td>
</tr>
<tr>
<td>Abnahme von Lüftungsanordnung)</td>
</tr>
<tr>
<td>Möglichkeiten der gesteuerten</td>
</tr>
<tr>
<td>Strukturlüftung (Nutzenverhältnisse)</td>
</tr>
<tr>
<td>Nutzung von Lüftung und</td>
</tr>
<tr>
<td>heatem, Aufenthalt für die</td>
</tr>
<tr>
<td>natürliche Lüftung</td>
</tr>
<tr>
<td>2.3 Wärme erzeugung</td>
</tr>
<tr>
<td>Einsparpotenziale</td>
</tr>
<tr>
<td>Quantifizierung der Heizenergie</td>
</tr>
<tr>
<td>Einfuß auf die Luftqualität</td>
</tr>
<tr>
<td>3. Sonnenscheibenthalten</td>
</tr>
<tr>
<td>3.1 Verschattung</td>
</tr>
<tr>
<td>Optimal Verschattung ohne</td>
</tr>
<tr>
<td>Beeinträchtigung der</td>
</tr>
<tr>
<td>Tageslichtbelichtung</td>
</tr>
<tr>
<td>Welche Potenziale bieten thermo</td>
</tr>
<tr>
<td>und elektrooptische Gläser</td>
</tr>
<tr>
<td>Tageslichtbelichtung</td>
</tr>
<tr>
<td>Möglichkeit der innerliegenden</td>
</tr>
<tr>
<td>Verschattung</td>
</tr>
<tr>
<td>3.2 Nachführtechnik</td>
</tr>
<tr>
<td>Wie groß sind die Kühlpotentialen</td>
</tr>
<tr>
<td>durch Nachführtechnik (Fensterlüftung, natürlicher Aufenthalt, Wind)</td>
</tr>
<tr>
<td>Quantifizierung der Heizenergie</td>
</tr>
<tr>
<td>bei mechanischer Nachführung</td>
</tr>
<tr>
<td>Optimierung der Regelsystemen</td>
</tr>
<tr>
<td>3.3 Schräglüftung</td>
</tr>
<tr>
<td>Welche Leistungs- potenziale bei der</td>
</tr>
<tr>
<td>Schräglüftung</td>
</tr>
<tr>
<td>Vergleich Schräglüftung / natürliche Rücklüftung</td>
</tr>
<tr>
<td>4. Licht</td>
</tr>
<tr>
<td>4.1 Tageslichtnutzung</td>
</tr>
<tr>
<td>Einfluß verbeselter</td>
</tr>
<tr>
<td>Tageslichtnutzung (Lichtplanung) auf den Energiespeicher</td>
</tr>
<tr>
<td>Einfluß auf das sommerliche</td>
</tr>
<tr>
<td>Verhalten</td>
</tr>
<tr>
<td>Einfluß auf die psychische</td>
</tr>
<tr>
<td>Behaglichkeit</td>
</tr>
<tr>
<td>Einfluß auf Komfortkriterien (Bildung, Kontraste, Reflexionen)</td>
</tr>
<tr>
<td>Interaktion mit der künstlichen</td>
</tr>
<tr>
<td>Beleuchtung</td>
</tr>
<tr>
<td>4.2 Beleuchtung</td>
</tr>
<tr>
<td>Einsparpotenziale durch</td>
</tr>
<tr>
<td>tageslichtabhängige Beleuchtungstheorie</td>
</tr>
<tr>
<td>Positionierung der Sensoren</td>
</tr>
<tr>
<td>Optimierung der Regelsystemen</td>
</tr>
<tr>
<td>Analyse der Stand-by Verhältn.</td>
</tr>
<tr>
<td>Nutzungsdynamische Schaltungs-</td>
</tr>
<tr>
<td>Nutzenabhängige Größen</td>
</tr>
<tr>
<td>5. Gesamtsystem Gebäude</td>
</tr>
<tr>
<td>5.1 Energieverbrauch</td>
</tr>
<tr>
<td>Energieströme im Gebäude</td>
</tr>
<tr>
<td>Lastverhalten</td>
</tr>
<tr>
<td>Spritzenleistung</td>
</tr>
<tr>
<td>Einfluß der Regelsystemen</td>
</tr>
<tr>
<td>Einsparpotenziale durch</td>
</tr>
<tr>
<td>Energienutzungssysteme</td>
</tr>
<tr>
<td>Auswirkungen des Lüftungskonzepts auf den Energiespeicher</td>
</tr>
<tr>
<td>Auswirkungen der Heiz / Kühlkonzepts auf den Energiespeicher</td>
</tr>
<tr>
<td>5.2 System interaction</td>
</tr>
<tr>
<td>Wirkungsaufnahme Tageslicht-</td>
</tr>
<tr>
<td>nutzung sommerlicher Verhalten</td>
</tr>
<tr>
<td>Wirkungsaufnahme interne Lüftung / Bauwerkheizung</td>
</tr>
<tr>
<td>Wirkungsaufnahme Lüftung / Bauwerkheizung</td>
</tr>
<tr>
<td>Potenziale zur Regelung des</td>
</tr>
<tr>
<td>Gebäude durch Nutzenergie (internetgebundene Netztechnik)</td>
</tr>
<tr>
<td>5.3 Sensitivität</td>
</tr>
<tr>
<td>Auswirkungen von Regelsystemen</td>
</tr>
<tr>
<td>Toleranzen durch Gebäude-</td>
</tr>
<tr>
<td>Behaglichkeit</td>
</tr>
<tr>
<td>"Robustheit" der Gebäudetechnik</td>
</tr>
<tr>
<td>gegenwärtiger Bedienung</td>
</tr>
<tr>
<td>6. Interaktion mit dem Nutzer</td>
</tr>
<tr>
<td>6.1 Verhältnis</td>
</tr>
<tr>
<td>Thermische Behaglichkeit</td>
</tr>
<tr>
<td>Verhältnis</td>
</tr>
<tr>
<td>6.2 Sensitivität</td>
</tr>
<tr>
<td>Auswirkungen von Sensoren</td>
</tr>
<tr>
<td>Behaglichkeit gegenwärtiger Bedienung</td>
</tr>
<tr>
<td>"Robustheit" der Gebäudetechnik</td>
</tr>
<tr>
<td>gegenwärtiger Bedienung</td>
</tr>
<tr>
<td>6.3 Schnittstelle Mensch-Technik</td>
</tr>
<tr>
<td>Möglichkeiten zur individuellen</td>
</tr>
<tr>
<td>Anpassung der Raumverhältnisse</td>
</tr>
<tr>
<td>Akzeptanz von automatisierten</td>
</tr>
<tr>
<td>Regelsystemen</td>
</tr>
<tr>
<td>Auswirkungen von automatisierten</td>
</tr>
<tr>
<td>Regelung manuell/automatisiert</td>
</tr>
<tr>
<td>Möglichkeiten der interaktiven</td>
</tr>
<tr>
<td>Nutzungseingriffe auf die Regelsystem</td>
</tr>
<tr>
<td>Entwicklung von intuitiven</td>
</tr>
<tr>
<td>Schnittstellen</td>
</tr>
</tbody>
</table>
Meßkonzept

Forschungsfeld Bauteilheizung/-kühlung

Ist die temperierte Schicht thermisch an die massiven Bauteile der Konstruktion angekoppelt, so kann die zusätzlich aktivierte Masse zur thermischen Phasenverschiebung genutzt werden. Die Speichermassen können dann bei günstigen Randbedingungen aktiv "beladen" werden und bilden einen Wärmepuffer. Die zeitliche Dynamik der Energieaufnahme und Auskühlung des Raumes wird gedämpft. Im Kühlfall kann die nächtliche Rückkühlung der Speichermassen das Raumklima an heißen Sommertagen erheblich verbessern.

Folgende Fragen ergeben sich im Zusammenhang mit der Bauteilaktivierung:
- Welche Auswirkungen ergeben sich auf den Energieverbrauch des Gebäudes?
- Wie ist der Einfluß auf die Behaglichkeit?
- Wie groß sind die Heiz-/Kühlpotentiale?
- Wie ist die optimale Regelstrategie für Bauteilheizungen?
- Welche Ansätze ergeben sich für die Einzelraumregelung?
- Welche Wechselwirkungen ergeben sich mit der Zuluftführung und dem Kaltluftabfall an der Fassade?

Mögliche Betriebsweisen im ZUB:
- Klassische Fußbodenheizung bzw. Fußbodenkühlung, TAD außer Betrieb.
- Deckenheizung bzw. Deckenkühlung, Fußbodenheizung außer Betrieb.
- TAD mit symmetrischer Wärmeabgabe bzw. Wärmeableitung zur Simulation ober- und unterseitig freiliegender Speichermassen.
- TAD mit asymmetrischer Wärmeabgabe bzw. Wärmeableitung zur Simulation von Hohlräumböden und Dämmschichten.
Forschungsfeld mechanische Lüftung

Folgende Fragestellungen sind im Bereich der mechanischen Lüftung aktuell:
- Wie wirken sich die unterschiedlichen Lüftungskonzepte auf den Energieverbrauch aus?
- Welche Einsparpotentiale lassen sich durch eine sensorgekoppelte Regelung des Luftwechsels erschließen?
- Wie kann die Zuluft behaglich in den Raum eingebracht werden?
- Welche Auswirkungen haben die jeweiligen Lüftungskonzepte auf die Luftqualität?
- Welche Rahmenbedingungen ermöglichen die Luftführung über Gebäudeabschnitte wie Atrien, Doppelfassaden, Wintergärten?
- Wie kann die mechanische Lüftung mit natürlicher Lüftung kombiniert werden?
- Wie groß ist der Anteil der Antriebsenergie im Verhältnis zum Wärmerückgewinngrad?

Wärmerückgewinnung
Im Zusammenhang mit der Wärmerückgewinnung aus Abluft sind insbesondere Fragen der erreichbaren Einsparpotentiale an Wärmeenergie von Interesse. Dabei sind die erforderlichen Hilfsenergien zu berücksichtigen. Auch der Einfluß der Wärmetauscher auf die Luftqualität muß in Bezug auf das subjektive Empfinden der Nutzer betrachtet werden.

Lüftungsschema des ZUB

Für die Gesamtenergiebilanz des Gebäudes sind insbesondere bei einem hohen Wärmedämmstandard die Lüftungswärmeverluste von relevanter Bedeutung. Dabei spielen sowohl die erreichten Wirkungsgrade der Wärmerückgewinnung als auch die Luftführung durch das Atrium bzw. die Zuluftnachströmung über die Fassade eine entscheidende Rolle. Um in diesem Zusammenhang zu weiterführenden Erkenntnissen zu gelangen, werden die Lufttemperaturen sowohl an den Luftaustrittsoffnungen im Atrium sowie an verschiedenen Überströmöffnungen zu den Büoräumen erfaßt. Auch die Temperaturschichtung, die sich innerhalb des Luftraumes im Atrium einstellt, wird ermittelt. Im Zusammenhang mit der Zuluftgeometrie über die Fassade stellen sich bei geringen Außen-temperaturen Fragen zur behaglichen Zuluftnutzung in die Büoräume. Die umfangreich mit Sensoren ausgestatteten Versuchsräume bieten vielfältige Möglichkeiten, die Wechselwirkungen zwischen Zuluftnutzung in den Raum und die sich einstellenden Temperaturschichtungen sowie die Empfindungsgrade zu erfassen. Dabei können mehrere alternative Lüftungsvarianten untersucht werden. Auch für den zeitweise dicht belegten Veranstaltungstrakt stellt sich die Frage nach dem günstigsten Lüftungskonzept. Mit möglichst geringem Energieaufwand muß hier für unterschiedliche Belegungsdichten eine gute Luftqualität sichergestellt werden.

Mögliche Betriebsweisen im ZUB:
- Abluftbetrieb mit Zuluftnutzung über das Atrium und Überströmöffnungen, Wärmerückgewinnung.
- Zuluftbetrieb in die Büoräume, Abluft aus dem Atrium, Wärmerückgewinnung.
- Freie Fensterlüftung, Lüftungsanlage außer Betrieb.
- Abluftbetrieb mit Fensterlüftung, sommerliche Nachtauskühlung.

links: Lüftungszentrale im ZUB
rechts: Zuluftführung über Atrium und Überströmöffnungen
Forschungsfeld freie Lüftung

Folgende Fragestellungen sind im Bereich der natürlichen Lüftung interessant:
- Wie kann die Zuluft ohne Behaglichkeitseinbußen in die Räume gebracht werden?
- Wieviel Antriebsenergie kann gespart werden, und welche Relation ergibt sich im Verhältnis zur Wärmerückgewinnung?
- Wie stark wird die Luftqualität beeinflusst, wenn Pufferzonen zur Luftführung genutzt werden?
- Wie lässt sich die Außenluft im Zusammenspiel mit der Heizung auf ein behagliches Niveau vorwärmen?
- Für welche Anwendungsfälle eignet sich die sensorgesteuerte Stoßlüftung?
- Welche Rolle spielen thermischer Auftrieb und Windkräfte?
- Wie können sich natürliche und mechanische Lüftung in einem Konzept sinnvoll ergänzen?

Zur Ermittlung der Wechselwirkungen zwischen dem Klima im Außenraum und der Gebäudeendströmung können die Luftbewegungen mittels mobiler Strömungssensoren ermittelt werden.
Sommerliches Verhalten

Bei Gebäuden mit hohen internen Wärme-
lasten spielt das sommerliche Verhalten
eine wichtige Rolle. Um den Einsatz einer
mechanischen Käteerzeugung zu vermei-
den, müssen in der Regel mehrere Strat-
egien zum Einsatz kommen. Als wichti-
vollste Methode werden Wärmeeinträge
von außen durch Sonnenschutzeinrich-
tungen vermieden. Gleichzeitig muß je-
doch die Tageslichtversorgung sicherge-
dichtet sein, um Kunstlicht zu vermeiden,
das wiederum zu erhöhten Wärmelasten
führen würde. Als weitere Strategie werden
 massive Bauteile während der kühleren
Nachtstunden durch freie Lüftung abge-
kühlt. Die thermoaktiven Decken des Ge-
bäudes können kontinuierlich mit kühlem
Wasser durchströmt werden, das über die
Bodenplatte rückgekühlt wird. Auf diese
Weise bilden die massiven Bauteile tagsü-
er einen Kältespeicher, der die Tempera-
turen innerhalb des Gebäudes in einem
häufigen Bereich hält. Da es sich hier-
bei um ein begrenztes Kühlpotential han-
delt, fällt das Nutzerverhalten besonders
gewicht. Tagsüber muß bei hohen
Außentemperaturen die Fensterlüftung auf
ein Mindestmaß reduziert werden.

Folgende Fragestellungen sind in diesem
Zusammenhang relevant:
- Optimale Verschattung ohne Beeinträchti-
gung der Tageslichtversorgung.
- Welche Potentiale bieten thermo- und
elektrochrome Gläser?
- Regelstrategien zur Gebäudeverschat-
tung.
- Möglichkeiten der innenliegenden Ver-
 schattung.
- Wie groß sind die Kühlpotentiale durch
 Nachtausführung (Fensterlüftung, natür-
lich Auftrieb, Wind)?
- Quantifizierung der Hilfsenergien bei
 mechanischer Nachführung.
- Optimierung der Regelstrategien.
- Welche Leistungspotentiale bietet die
 Sohlplattenkühlung?
- Vergleich Sohlplattenkühlung und nächt-
 liche Rückkühlung.

Die Zusammenhänge des sommerlichen
Wärmeverhaltens beinhalten eine Vielzahl
von Einzelaspekten. Die Stellung der Son-
nenschutzelemente wird im gesamten Ge-
bäude erfaßt ebenso die Einschalzzeiten
der Kunstlichts. Versuchsaufbauten zur
Wirkungsweise von speziellen Verglasung-
en können im Experimentalbereich integ-
riert werden. Regelstrategien für die Ge-
bäudeverschattung müssen in Abstimm-
zung mit dem Nutzer entwickelt und opti-
miert werden. Hierzu werden begleitende
Nutzerbefragungen durchgeführt. Die
Leistungspotentiale der nächtlichen Aus-
kühlung des Gebäudes durch freie Lüftung
und der Sohlplattenkühlung werden im
Rahmen der Forschungsgebiete Lüftung
und Bauteilverung detailliert ermittelt.

Strategien zur sommerlichen Kühlung:
- Abkühlung der massiven Oberflächen
 durch verstärkte Nachtvitung.
- Ausführung der Speichermassen durch
nächtlichen Betrieb der TAD mit Rückfüh-
lung über die Bodenplatte.
- Kontinuierliches Abführen von Wärme-
 überschüssen am Tage über die Fußbo-
 denkühlung mit Rückkühlung über die
 Bodenplatte.
- Vermeidung von unnötigem Wärmeein-
 trag durch wirkungsvollen Sonnenschutz.

Tageslicht und Beleuchtung

Um einen geringen Gesamtenergiever-
brauch zu erreichen, muß die Tageslicht-
versorgung des Gebäudes optimal gestal-
tet werden. Hier gilt es insbesondere im
Sommer, einerseits möglichst viel Tages-
licht in die Räume zu lassen, andererseits
eine Überhitzung der Räume durch über-
mäßig Wärmeeintrag zu vermeiden. Im
Winter soll möglichst viel Solarstrahlung in
die Räume gelangen, um möglichst hohe
solare Wärmegewinne zu erzielen. Gleich-
zeitig müssen Blendung und Reflexionen
an den Arbeitsplätzen vermieden werden.
Um sich den wechselnden Außenbeding-
ungen flexibel anpassen zu können, wird
mit einem wirkungsvollen außenliegenden
Sonnenschutz gearbeitet. Um möglichst
viel Tageslicht bis in die Raumbedin zu brin-
gen, wird das Licht im oberen Bereich der

Im Zusammenspiel zwischen Tages- und Kunstlicht sind folgende Fragen interessant:
- Aspekte der Tageslichtversorgung
 - Einfluß verbesserter Tageslichtnutzung auf den Energieverbrauch.
 - Einfluß auf das sommerliche Verhalten.
 - Einfluß auf die psychische Behaglichkeit.
 - Einfluß auf Komfortkriterien (Blendung, Kontraste, Reflexionen).
- Interaktionen mit der künstlichen Beleuchtung.
- Bereich Kunstlicht
 - Einsparpotential durch tageslichtabhängige Beleuchtungssteuerung.
 - Optimierung der Regelstrategien.
 - Positionierung der Sensoren.
 - Analyse der stand-by-Verluste.
 - Nutzerabhängige Größen.

Behaglichkeit

"Beobachte das Schwimmen der Fische im Wasser, und du wirst den Flug der Vögel in der Luft begreifen."
Leonardo da Vinci (1452-1519)

Der Außenbezug spielt für das Wohlbefinden eine wichtige Rolle.

Der Mensch im Wechselspiel mit den Parametern seiner Umwelt.

Fotos und Grafik: Premyslaw Szymczak